Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

10-(4-Hydroxy-3-methoxy-5-nitrobenzylidene)anthrone

Wei Zhou,^a Zhimin Wu,^b Weixiao Hu^a* and Chunnian Xia^a

^aCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China, and ^bNanping Environment Monitoring Station, Nanping 35300, Fujian Province, People's Republic of China Correspondence e-mail: huyang@mail.hz.zj.cn

Received 22 October 2007; accepted 24 October 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.056; wR factor = 0.116; data-to-parameter ratio = 14.3.

In the title compound, $C_{22}H_{15}NO_5$, prepared from anthrone and 4-hydroxy-3-methoxy-5-nitrobenzaldehyde, the anthracene fragment is non-planar. The central six-membered ring assumes an asymmetric boat conformation, while the two outer benzene rings make a dihedral angle of 28.08 (10)°. The hydroxy group is involved in an intramolecular hydrogen bond. In the crystal structure, a weak intermolecular C– H···O hydrogen bond links the molecules into ribbons along the *c* axis.

Related literature

For related literature, see: Day (1963); Helge *et al.* (2003); Hu & Zhou (2004); Paull *et al.* (1992).

Experimental

Crystal data

 $C_{22}H_{15}NO_5$ $V = 1687.7 (10) Å^3$
 $M_r = 373.35$ Z = 4

 Monoclinic, P_{21}/c Mo $K\alpha$ radiation

 a = 7.542 (3) Å
 $\mu = 0.11 \text{ mm}^{-1}$

 b = 27.810 (10) Å T = 298 (2) K

 c = 8.111 (3) Å $0.30 \times 0.15 \times 0.10 \text{ mm}$
 $\beta = 97.257 (5)^{\circ}$ $0.30 \times 0.15 \times 0.10 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1997) $T_{min} = 0.979, T_{max} = 0.988$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of
$wR(F^2) = 0.116$	independent and constrained
S = 0.92	refinement
3691 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
258 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

8413 measured reflections

 $R_{\rm int} = 0.060$

3691 independent reflections

2125 reflections with $I > 2\sigma(I)$

Table 1

D-

O4-C22

Hydrogen-bond g	geometry (A, °).
-----------------	------------------

$H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$-H4X\cdots O3$ $-H22C\cdots O5^{i}$	0.86 (3)	1.78 (3)	2.571 (3)	152 (3)
	0.96	2.56	3.518 (3)	173

Symmetry code: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the support of the Science and Technology Development Fund (2005) of Zhejiang University of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2325).

References

Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Day, J. H. (1963). Chem. Rev. 63, 65-80.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Helge, P., Yukihito, I., Takeo, H. & Thomas, S. (2003). J. Med. Chem. 46, 3382–3394.

Hu, W. X. & Zhou, W. (2004). Bioorg. Med. Chem. Lett. 14, 621-622.

- Paull, K. D., Lin, C. M., Malspeis, L. & Hamel, E. (1992). Cancer Res. 52, 3892– 3900.
- Sheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, 04498 [doi:10.1107/S1600536807052919]

10-(4-Hydroxy-3-methoxy-5-nitrobenzylidene)anthrone

W. Zhou, Z. Wu, W. Hu and C. Xia

Comment

10-Substituted benzylideneanthrones have been known for a long time for their widespread use as functional dye and disperse dye (Day, 1963). Recently, some 10-substituted benzylideneanthrones have been found to possess a high antitumor activity (Paull *et al.*, 1992; Helge *et al.*, 2003). Owing to our interest in this area, we have prepared a series of 10-substituted benzylideneanthrones, and evaluated their anticancer activity. Our study on the structure-activity relationship (SAR) showed that the substitutent in phenyl moiety of the molecule affects its antitumor activity (Hu & Zhou, 2004). In continuation of our research work on SAR, we present here the crystal structure of the title compound, (I) (Fig. 1).

The three rings of anthraquinone moiety in (I) are not coplanar. The two outer benzene rings form a dihedral angle of 28.08 (10)°. The central six-membered ring assumes an asymmetric boat conformation with atoms C5 and C10 deviating from the plane at 0.322 (3) and 0.208 (3) Å, respectively. The plane of benzylidene moiety (C15—C21) forms a dihedral angle of 8.58 (11)° and 37.30 (8)° with the planes C1—C5/C11/C14 and C5—C9/C12/C13, respectively. The hydroxy and nitro groups are involved in intramolecluar hydrogen bond (Table 1).

In the crystal, obtained as a racemic mixture, the weak intermolecular C—H···O hydrogen bond (Table 1) links the molecules into ribbons along the c axis (Fig. 2).

Experimental

To a mixture of anthrone (1.60 g, 8.25 mmol) and 4-hydroxy-3-methoxy-5-nitrobenzaldehyde (1.70 g, 8.63 mmol) in 25 ml of absolute alcohol was slowly bubbled anhydrous hydrogen chloride. The mixture was refluxed until the TLC test showed that the reaction was complete. Then the mixture was cooled down to the room temperature. The precipitate was filtrated and washed with absolute alcohol, recrystallized with absolute alcohol to give red crystals of the title compound (2.5 g, yield 79.8%, m.p. 481–484 K). Since the crystal product was not found to be suitable for X-ray diffraction studies, a few crystals were dissolved in absolute ethanol, which was allowed to evaporate slowly to give red crystals of (I) suitable for X-ray diffraction studies.

Refinement

C-bound H atoms were placed in calculated positions (C—H 0.93–0.96 Å) and refined as riding, with $U_{iso}(H) = 1.2-1.5$ Ueq of the parent atom. The hydroxy H atom was located in a difference map and refined isotropically with restaint O—H=0.86 (3) Å.

Figures

Fig. 1. The structure of (I) with 30% probability displacement ellipsoids.

Fig. 2. Packing diagram of (I), viewed along the a axis. Dashed lines denote hydrogen bonds. For clarity, H atoms have been omitted except for those involved in hydrogen bonding.

10-(4-Hydroxy-3-methoxy-5-nitrobenzylidene)anthrone

Crystal data

C₂₂H₁₅NO₅ $M_r = 373.35$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.542 (3) Å b = 27.810 (10) Å c = 8.111 (3) Å $\beta = 97.257$ (5)° V = 1687.7 (10) Å³ Z = 4 $F_{000} = 776$ $D_x = 1.469 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 645 reflections $\theta = 2.6-20.2^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 298 (2) KNeedle, red $0.30 \times 0.15 \times 0.10 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	3691 independent reflections
Radiation source: fine-focus sealed tube	2125 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.060$

T = 298(2) K	$\theta_{max} = 27.1^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)	$h = -9 \rightarrow 5$
$T_{\min} = 0.979, \ T_{\max} = 0.988$	$k = -33 \rightarrow 35$
8413 measured reflections	$l = -9 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.116$	$w = 1/[\sigma^2(F_o^2) + (0.037P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 0.92	$(\Delta/\sigma)_{\rm max} < 0.001$
3691 reflections	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
258 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
01	1.0555 (3)	0.64984 (6)	-0.2655 (2)	0.0685 (6)
O2	0.3735 (2)	0.53073 (6)	0.6703 (2)	0.0614 (5)
O3	0.3936 (2)	0.58518 (6)	0.8596 (2)	0.0580 (5)
O4	0.5069 (3)	0.66996 (7)	0.8018 (2)	0.0679 (6)
H4X	0.459 (4)	0.6465 (11)	0.850 (4)	0.107 (13)*
05	0.6530(2)	0.72449 (6)	0.6013 (2)	0.0636 (5)
N1	0.4187 (2)	0.57080 (7)	0.7197 (2)	0.0455 (5)
C1	0.9347 (3)	0.55343 (9)	-0.2948 (3)	0.0486 (6)
H1	0.9871	0.5657	-0.3837	0.058*
C2	0.8652 (3)	0.50819 (10)	-0.3044 (3)	0.0556 (7)
H2	0.8717	0.4895	-0.3985	0.067*

C3	0.7850 (3)	0.49035 (9)	-0.1734 (3)	0.0514 (6)
Н3	0.7374	0.4594	-0.1794	0.062*
C4	0.7748 (3)	0.51779 (8)	-0.0342 (3)	0.0455 (6)
H4	0.7194	0.5053	0.0526	0.055*
C5	0.8392 (3)	0.59429 (7)	0.1292 (2)	0.0367 (5)
C6	1.0506 (3)	0.64585 (8)	0.3191 (3)	0.0446 (6)
Н6	1.0080	0.6322	0.4111	0.054*
C7	1.1798 (3)	0.68127 (9)	0.3426 (3)	0.0529 (6)
H7	1.2221	0.6913	0.4497	0.064*
C8	1.2465 (3)	0.70188 (9)	0.2083 (3)	0.0570 (7)
H8	1.3309	0.7264	0.2240	0.068*
C9	1.1865 (3)	0.68571 (8)	0.0514 (3)	0.0514 (6)
Н9	1.2320	0.6992	-0.0393	0.062*
C10	1.0131 (3)	0.62950 (8)	-0.1433 (3)	0.0452 (6)
C11	0.8460 (3)	0.56394 (8)	-0.0213 (3)	0.0369 (5)
C12	0.9829 (3)	0.63023 (7)	0.1605 (3)	0.0368 (5)
C13	1.0589 (3)	0.64947 (8)	0.0255 (3)	0.0397 (5)
C14	0.9285 (3)	0.58177 (8)	-0.1537 (3)	0.0402 (5)
C15	0.7018 (3)	0.58748 (8)	0.2178 (3)	0.0422 (6)
H15	0.6264	0.5625	0.1774	0.051*
C16	0.6457 (3)	0.61121 (8)	0.3653 (3)	0.0386 (5)
C17	0.5543 (3)	0.58345 (8)	0.4672 (3)	0.0398 (5)
H17	0.5247	0.5519	0.4378	0.048*
C18	0.5060 (3)	0.60242 (8)	0.6135 (3)	0.0379 (5)
C19	0.5437 (3)	0.64949 (8)	0.6604 (3)	0.0428 (6)
C20	0.6275 (3)	0.67848 (8)	0.5509 (3)	0.0427 (6)
C21	0.6749 (3)	0.65947 (8)	0.4073 (3)	0.0423 (6)
H21	0.7282	0.6793	0.3355	0.051*
C22	0.7791 (4)	0.75190 (9)	0.5260 (3)	0.0738 (9)
H22A	0.8903	0.7347	0.5336	0.111*
H22B	0.7976	0.7822	0.5822	0.111*
H22C	0.7350	0.7573	0.4113	0.111*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0878 (14)	0.0813 (13)	0.0387 (10)	-0.0103 (10)	0.0174 (10)	0.0143 (9)
O2	0.0745 (13)	0.0505 (11)	0.0633 (12)	-0.0172 (9)	0.0249 (10)	-0.0054 (9)
O3	0.0698 (12)	0.0653 (12)	0.0444 (11)	-0.0045 (9)	0.0287 (9)	-0.0022 (8)
O4	0.0867 (15)	0.0637 (13)	0.0617 (13)	-0.0198 (11)	0.0424 (11)	-0.0203 (10)
O5	0.0831 (13)	0.0455 (10)	0.0699 (13)	-0.0168 (9)	0.0395 (11)	-0.0149 (9)
N1	0.0433 (12)	0.0510 (13)	0.0441 (13)	0.0001 (9)	0.0133 (10)	0.0020 (10)
C1	0.0468 (15)	0.0680 (18)	0.0317 (13)	0.0102 (13)	0.0082 (11)	-0.0013 (12)
C2	0.0561 (17)	0.0702 (18)	0.0397 (15)	0.0116 (14)	0.0037 (13)	-0.0161 (13)
C3	0.0461 (15)	0.0538 (15)	0.0535 (16)	0.0043 (12)	0.0027 (13)	-0.0109 (12)
C4	0.0450 (15)	0.0515 (15)	0.0408 (14)	0.0029 (11)	0.0084 (12)	-0.0039 (11)
C5	0.0415 (13)	0.0411 (13)	0.0274 (12)	0.0043 (10)	0.0043 (10)	0.0026 (9)
C6	0.0447 (15)	0.0527 (15)	0.0359 (14)	0.0026 (11)	0.0031 (11)	0.0021 (11)

C7	0.0474 (15)	0.0617 (17)	0.0481 (15)	-0.0019 (13)	0.0001 (13)	-0.0083 (13)
C8	0.0451 (16)	0.0598 (17)	0.0673 (19)	-0.0092 (12)	0.0121 (14)	-0.0085 (14)
C9	0.0510 (16)	0.0495 (15)	0.0571 (17)	0.0015 (12)	0.0206 (13)	0.0049 (12)
C10	0.0449 (15)	0.0560 (15)	0.0354 (14)	0.0067 (11)	0.0086 (11)	0.0070 (11)
C11	0.0339 (13)	0.0443 (13)	0.0323 (13)	0.0082 (10)	0.0042 (10)	-0.0006 (10)
C12	0.0349 (13)	0.0409 (13)	0.0345 (13)	0.0064 (10)	0.0037 (10)	0.0028 (10)
C13	0.0397 (13)	0.0413 (13)	0.0392 (13)	0.0061 (10)	0.0089 (11)	0.0042 (10)
C14	0.0374 (13)	0.0524 (14)	0.0300 (13)	0.0098 (11)	0.0013 (10)	0.0017 (10)
C15	0.0464 (14)	0.0441 (14)	0.0367 (13)	-0.0013 (11)	0.0077 (11)	-0.0020 (10)
C16	0.0391 (13)	0.0441 (13)	0.0328 (12)	-0.0002 (10)	0.0056 (10)	-0.0015 (10)
C17	0.0389 (13)	0.0429 (13)	0.0377 (13)	-0.0014 (10)	0.0054 (11)	-0.0041 (10)
C18	0.0336 (12)	0.0447 (14)	0.0367 (13)	-0.0015 (10)	0.0101 (10)	0.0025 (10)
C19	0.0396 (13)	0.0516 (15)	0.0398 (14)	0.0003 (11)	0.0150 (11)	-0.0102 (11)
C20	0.0432 (14)	0.0403 (13)	0.0463 (14)	-0.0028 (10)	0.0115 (12)	-0.0037 (11)
C21	0.0448 (14)	0.0452 (14)	0.0390 (14)	-0.0010 (11)	0.0132 (11)	0.0028 (10)
C22	0.107 (2)	0.0527 (17)	0.068 (2)	-0.0253 (16)	0.0358 (18)	-0.0068 (14)

Geometric parameters (Å, °)

O1—C10	1.218 (2)	С7—С8	1.381 (3)
O2—N1	1.218 (2)	С7—Н7	0.9300
O3—N1	1.240 (2)	C8—C9	1.371 (3)
O4—C19	1.340 (3)	С8—Н8	0.9300
O4—H4X	0.86 (3)	C9—C13	1.391 (3)
O5—C20	1.350 (2)	С9—Н9	0.9300
O5—C22	1.416 (3)	C10-C14	1.471 (3)
N1—C18	1.446 (3)	C10-C13	1.478 (3)
C1—C2	1.362 (3)	C11—C14	1.398 (3)
C1—C14	1.395 (3)	C12—C13	1.405 (3)
С1—Н1	0.9300	C15—C16	1.474 (3)
C2—C3	1.380 (3)	С15—Н15	0.9300
С2—Н2	0.9300	C16—C17	1.378 (3)
C3—C4	1.373 (3)	C16—C21	1.395 (3)
С3—Н3	0.9300	C17—C18	1.389 (3)
C4—C11	1.390 (3)	С17—Н17	0.9300
C4—H4	0.9300	C18—C19	1.383 (3)
C5—C15	1.347 (3)	C19—C20	1.407 (3)
C5—C12	1.473 (3)	C20—C21	1.367 (3)
C5—C11	1.490 (3)	C21—H21	0.9300
C6—C7	1.382 (3)	C22—H22A	0.9599
C6—C12	1.392 (3)	С22—Н22В	0.9599
С6—Н6	0.9300	C22—H22C	0.9599
C19—O4—H4X	102 (2)	C14—C11—C5	119.54 (19)
C20—O5—C22	117.26 (18)	C6—C12—C13	117.6 (2)
O2—N1—O3	121.83 (19)	C6—C12—C5	123.17 (19)
O2—N1—C18	119.34 (19)	C13—C12—C5	119.20 (19)
O3—N1—C18	118.83 (19)	C9—C13—C12	120.0 (2)
C2-C1-C14	121.1 (2)	C9—C13—C10	119.3 (2)
C2—C1—H1	119.4	C12—C13—C10	120.6 (2)

C14—C1—H1	119.4	C1—C14—C11	119.6 (2)
C1—C2—C3	119.4 (2)	C1—C14—C10	119.8 (2)
C1—C2—H2	120.3	C11—C14—C10	120.53 (19)
С3—С2—Н2	120.3	C5-C15-C16	133.5 (2)
C4—C3—C2	120.6 (2)	С5—С15—Н15	113.2
С4—С3—Н3	119.7	C16—C15—H15	113.2
С2—С3—Н3	119.7	C17—C16—C21	117.88 (19)
C3—C4—C11	120.9 (2)	C17—C16—C15	116.9 (2)
C3—C4—H4	119.5	C21—C16—C15	125.22 (19)
C11—C4—H4	119.5	C16—C17—C18	120.3 (2)
C15—C5—C12	127.0 (2)	С16—С17—Н17	119.8
C15—C5—C11	117.8 (2)	С18—С17—Н17	119.8
C12—C5—C11	115.14 (18)	C19—C18—C17	121.83 (19)
C7—C6—C12	121.3 (2)	C19—C18—N1	120.36 (19)
С7—С6—Н6	119.4	C17—C18—N1	117.8 (2)
С12—С6—Н6	119.4	O4—C19—C18	125.4 (2)
C8—C7—C6	120.6 (2)	O4—C19—C20	117.0 (2)
С8—С7—Н7	119.7	C18—C19—C20	117.54 (19)
С6—С7—Н7	119.7	O5—C20—C21	125.6 (2)
C9—C8—C7	119.0 (2)	O5—C20—C19	114.26 (19)
С9—С8—Н8	120.5	C21—C20—C19	120.2 (2)
С7—С8—Н8	120.5	C20—C21—C16	122.0 (2)
C8—C9—C13	121.3 (2)	C20—C21—H21	119.0
С8—С9—Н9	119.4	C16—C21—H21	119.0
С13—С9—Н9	119.4	O5—C22—H22A	109.5
O1-C10-C14	122.0 (2)	O5—C22—H22B	109.5
O1-C10-C13	121.6 (2)	H22A—C22—H22B	109.5
C14—C10—C13	116.18 (19)	O5—C22—H22C	109.5
C4—C11—C14	118.3 (2)	H22A—C22—H22C	109.5
C4—C11—C5	122.13 (19)	H22B—C22—H22C	109.5
C14—C1—C2—C3	1.0 (4)	C4—C11—C14—C10	-177.2 (2)
C1—C2—C3—C4	0.0 (4)	C5-C11-C14-C10	1.9 (3)
C2—C3—C4—C11	-0.5 (4)	O1-C10-C14-C1	16.0 (3)
C12—C6—C7—C8	-0.6 (4)	C13—C10—C14—C1	-158.6 (2)
C6—C7—C8—C9	-1.9 (4)	O1-C10-C14-C11	-165.8 (2)
C7—C8—C9—C13	0.7 (4)	C13-C10-C14-C11	19.6 (3)
C3—C4—C11—C14	0.0 (3)	C12—C5—C15—C16	0.7 (4)
C3—C4—C11—C5	-179.1 (2)	C11-C5-C15-C16	-176.8 (2)
C15—C5—C11—C4	-29.3 (3)	C5-C15-C16-C17	-150.8 (2)
C12—C5—C11—C4	152.9 (2)	C5-C15-C16-C21	30.5 (4)
C15—C5—C11—C14	151.6 (2)	C21—C16—C17—C18	-5.0 (3)
C12-C5-C11-C14	-26.2 (3)	C15-C16-C17-C18	176.3 (2)
C7—C6—C12—C13	4.1 (3)	C16-C17-C18-C19	1.4 (3)
C7—C6—C12—C5	-177.0 (2)	C16—C17—C18—N1	-176.7 (2)
C15—C5—C12—C6	32.7 (3)	O2—N1—C18—C19	174.1 (2)
C11—C5—C12—C6	-149.8 (2)	O3—N1—C18—C19	-6.6 (3)
C15—C5—C12—C13	-148.3 (2)	O2—N1—C18—C17	-7.8 (3)
C11—C5—C12—C13	29.2 (3)	O3—N1—C18—C17	171.6 (2)
C8—C9—C13—C12	2.9 (3)	C17—C18—C19—O4	-177.7 (2)

C8—C9—C13—C10	-173.2 (2)	N1-C18-C19-O4	0.4 (4)
C6—C12—C13—C9	-5.2 (3)	C17—C18—C19—C20	2.4 (3)
C5—C12—C13—C9	175.8 (2)	N1-C18-C19-C20	-179.5 (2)
C6-C12-C13-C10	170.92 (19)	C22—O5—C20—C21	-18.0 (4)
C5-C12-C13-C10	-8.1 (3)	C22—O5—C20—C19	162.3 (2)
O1—C10—C13—C9	-15.0 (3)	O4—C19—C20—O5	-2.7 (3)
C14—C10—C13—C9	159.6 (2)	C18—C19—C20—O5	177.2 (2)
O1-C10-C13-C12	168.9 (2)	O4—C19—C20—C21	177.6 (2)
C14—C10—C13—C12	-16.5 (3)	C18—C19—C20—C21	-2.5 (3)
C2-C1-C14-C11	-1.5 (3)	O5-C20-C21-C16	179.1 (2)
C2-C1-C14-C10	176.7 (2)	C19—C20—C21—C16	-1.1 (4)
C4-C11-C14-C1	1.0 (3)	C17—C16—C21—C20	4.9 (3)
C5-C11-C14-C1	-179.9 (2)	C15-C16-C21-C20	-176.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
O4—H4X···O3	0.86 (3)	1.78 (3)	2.571 (3)	152 (3)
C22—H22C···O5 ⁱ	0.96	2.56	3.518 (3)	173
Symmetry codes: (i) x , $-y+3/2$, $z-1/2$.				

sup-7

Fig. 1

